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Abstract. Actuator disc theory is the basis for most rotor design methods, be it with many extensions and engineering rules

added to make it a well-established method. However, the off-design condition of a very low rotational speed Ω of the disc is

still a topic for scientific discussions. Several authors have presented solutions of the associated momentum theory for actuator

discs with a constant circulation, the so-called Joukowsky discs, showing the efficiency Cp→∞ for the tip speed ratio λ→ 0.

The momentum balance is very sensitive to the choice of the vortex core radius δ as the pressure and velocity gradients become5

infinite for δ→ 0. Viscous vortex cores do not show this singular behaviour so an inviscid core model is sought which removes

the momentum balance sensitivity to singular flow. A vortex core with a constant δ does so. Applying this in the momentum

balance results in Cp→ 0 for λ→ 0, instead of Cp→∞. At the disc the velocity in the meridian plane is shown to be constant.

The Joukowsky actuator disc theory is confirmed by a very good match with the numerically obtained results. It gives higher

Cp values than corresponding solutions for discs with a Goldstein-based wake circulation published in literature.10

1 Introduction

Although the concept of the actuator disc is more than 100 years old, it is still the basis for rotor design codes using the blade

element momentum theory developed over these 100 years, see van Kuik et al. (2015). In recent years the behaviour of actuator

disc flows with a low rotational speed has been studied by several authors, providing several solutions depending on the type

of load that is applied, see e.g. Sørensen (2015). Research has focussed on rotors and discs having a constant circulation in the15

wake, known as the Joukowsky distribution (1918), or the Betz distribution (1927) yielding a helicoidal wake structure moving

with a uniform axial velocity. Goldstein (1929) was the first to find a solution for this wake for lightly loaded propellers, see

Okulov et al. (2015) for an overview. Both distributions were assumed to represent the circulation distribution of an ideal

rotor. The present paper considers the Joukowsky distribution and compares the results with solutions of the Betz-Goldstein

distribution modified for heavily loaded actuator discs reported in Okulov and Sørensen (2008); Okulov (2014) and Wood20

(2015).

The swirl of the wake is induced by a discrete vortex at the wake centre line, leading to an infinite azimuthal velocity and

pressure for the radius r→ 0. The question how to model the discrete vortex and how this impacts the momentum balance has

been studied by e.g. de Vries (1979); Sharpe (2004); Xiros and Xiros (2007); Wood (2007); Sørensen and van Kuik (2011).

All performance predictions reported in these references show a remarkable result: in the limit to zero rotational speed the25

efficiency of the disc increases to infinity, which is highly non-physical.
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Within the inviscid flow regime, the analysis in Sørensen and van Kuik (2011) is considered to be exact apart from the choice

of the vortex core at the axis of the wake. The centreline vortex is a Rankine vortex of which the core diameter is proportional to

the wake radius. Their analysis shows that adding a disturbance parameter to the momentum balance removes the non-physical

result of infinite efficiency for zero rotational speed, no matter how small this disturbance is. This is an indication that the

momentum balance is very sensitive to small deviations in the flow parameters.5

A failed attempt to reproduce the results of Sørensen and van Kuik (2011) by the potential flow actuator disc code described

in van Kuik and Lignarolo (2016) initiated a re-analysis of the vortex core model and its impact on the momentum theory. In

section 2 the equations of motion for Joukowsky actuator disc flows are given as well as for the disc loading and far wake

properties. Herewith the general mass, momentum and energy balances are derived in section 3.1, followed by section 3.2

where the vortex core model is analysed. The chosen core model is applied in section 3.3. Section 4 describes the numerical10

approach of which the results are presented in section 5 and compared with the momentum theory results in section 6.

2 The equations of motion

2.1 The equations for a disc with constant circulation

The flow is governed by the Euler equation:

1
ρ

(f −∇p) = v ·∇v (1)15

in which ρ is the fluid density [kg/m3], f the force density [N/m3], p the static pressure [N/m2], v the velocity vector [m/s] and

H = p+ 1
2ρv ·v the total pressure [N/m2]. Also the equivalent formulation:

f = ∇H − ρv×ω (2)

will be used. A cylindrical reference system (x,r,ϕ) is applied, with the positive x coinciding with the downwind wake axis,

and with r and ϕ the radial and azimuthal coordinate, see figure 1. For the special case of a disc flow with constant circulation20

induced by a free vortex Γ at the axis of the wake the azimuthal velocity in the wake is:

Γ = 2πrvϕ. (3)

The vortex is a potential flow vortex, with a vortex core having diameter δ(x). It is common to model the core as a Rankine

vortex, characterized by solid body rotation of the flow, after which the limit of δ→ 0 is taken. Figure 1 shows (half of) the

cross section through the stream-tube in the meridian plane, with the disc and fully developed wake indicated. The disc has25

radius R and area A, while A1 is the area of the far wake with radius R1. In the remainder the index 0 is used for flow variables

in the undisturbed, upstream flow. The fully developed far wake is indicated by the index 1, see figure 1. If there is no index,

the variables are taken at the position of the actuator disc.
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2.2 The disc load

Only the pressure and the azimuthal velocity will be discontinuous across the disc with thickness ε for ε→ 0, so integration of

the axial and azimuthal component of (1) gives:

1
ρ
F =

1
ρ

∫

ε

fdx= ex
∆p
ρ

+ eϕvx∆vϕ (4)

= ex∆
(
H

ρ
− 1

2
v2
ϕ

)
+ eϕvx∆vϕ (5)5

where F denotes a surface load [N/m2], ∆ the difference between the down- and upwind side of the disc and e the unit vector.

As vϕ = 0 at the upwind side of the disc ∆vϕ = vϕ. In (5) the Bernoulli equation integrated across the disc thickness has been

used:

∆p= ∆H − 1
2
ρv2
ϕ. (6)

The local power converted by the force field f is f ·v which has to be equal to the local contribution to the torque, rfϕ, times10

rotational speed Ω. The converted power f ·v becomes:

f ·v = Ωrfϕ = (v ·∇)H. (7)

This shows that the work done by the force field is expressed in a change in the total pressure or Bernoulli constant H.

Integration of (7) across the thickness combined with the azimuthal component of (4) gives the general expression:

∆H =
Ωr
vx
Fϕ = ρΩrvϕ (8)15

and, with (3), for the Joukowsky disc:

1
ρ

∆H =
ΩΓ
2π

. (9)

It follows that ∆H = constant by which (6) shows that any non-uniformity in the pressure jump is due to creation of swirl

across the disc. The swirl-pressure jump does not change H so does not contribute to the conversion of power, so (6) may be

interpreted as ∆p= ∆pHconversion + ∆pHconserving . The sign conventions are that the rotational speed Ω> 0 and Γ< 0 so20

∆H < 0 implying that energy is extracted from the flow.

2.3 The far wake

With the conservation of circulation:

rvϕ = r1vϕ,1 (10)

the Bernoulli equation (9) is written as:25

1
ρ

(p0− p1) =
1
2
(
v2
x,1−U2

0 + v2
ϕ,1

)
− ΩΓ

2π
. (11)
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Figure 1. Pressure distributions acting in the momentum balance. The arrows give the direction of the pressure fields acting on the flow. The

meaning of a, b, c and d is given in the main text.

Differentiating with respect to r and combining it with the radial pressure equilibrium in the far wake:

∂p1

∂r1
=−ρv

2
ϕ,1

r1
(12)

it is clear that vx,1 is constant. By this (11) can be written as:

p1− p0 =−1
2
ρv2
ϕ,1 + p∗. (13)

At the wake boundary the pressure has to be undisturbed (p0), so p∗ = 1
2ρv

2
ϕ,R1

and, with (3):5

p1− p0 =−1
2
ρv2
ϕ,1 +

1
2
ρ

(
Γ

2πR1

)2

. (14)

This shows that the pressure variation in the far wake is is caused only by the swirl. By merging (14) with (9) and (11) the

second term at the right hand side appears as a loss in H due to swirl:

∆H =
1
2
(
v2
x1
−U2

0

)
− 1

2
ρ

(
Γ

2πR1

)2

. (15)

3 Momentum theory10

3.1 The momentum, mass and energy balance

The momentum equation drawn on the stream-tube as control volume, see figure 1, is written as:

T −
∫

A1

(p1− p0)dA1 = ρ

∫

A1

vx,1 (vx,1−U0)dA1 (16)

where T is the thrust [N] being the integrated pressure jump across the disc. It is convenient to split A and A1 in two parts:

the area inside the vortex core, so r < δ or δ1, and outside of it δ < r < R or δ1 < r1 <R1. Irrespective of the choice for δ/δ1,15
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in the limit δ→ 0 the core area only contributes to the momentum balance when the pressure or momentum flux is of order

O(δ2) or higher. In Sørensen and van Kuik (2011) this is analysed for the Rankine root vortex, showing that this is not the

case. The same holds for the energy balance. Consequently in the remainder of the present analysis the flow region r < δ or δ1

is discarded, with an exception for section 3.2.

Figure 1 shows the pressure distributions appearing in the left hand side of (16) including the thrust:5

a) constant pressure jump across the disc giving the jump in Bernoulli parameter H according to the first term at the right

hand side of (6).

b) pressure distribution due to jump in vϕ according to the second term at the right hand side of (6). This term conserves

H .

c) the same pressure distribution in the far wake due to the vϕ distribution according to the first term at the right hand side10

of (14), conserving H .

d) constant pressure to achieve p1− p0 = 0 according to the second term at the right hand side of (14) or (15).

When these contributions are expressed in Γ by (3) and (8), integrated, subjected to limδ→ 0, substituted in (16) and divided

by the disc surface πR2 the result is:

ΩΓ
2π
− 1

2

(
Γ

2πR

)2

−
(

Γ
2πR

)2
R∫

δ

dr

r
+
(

Γ
2πR

)2
R1∫

δ1

dr1

r1
= vx,1 (vx,1−U0)

(
R1

R

)2

(17)15

a d b c

where the terms in the left hand side have been named in accordance with figure 1. The mass balance is:

vx
vx,1

=
(
R1

R

)2

(18)

with the bar above vx indicating that it is the average value. The energy balance follows from (15):

ΩΓ
2π
− 1

2

(
Γ

2πR1

)2

=
1
2
(
v2
x,1−U2

0

)
. (19)20

Mixing (17) and (18) simplifies the right hand side of the momentum balance yielding:

ΩΓ
2π
− 1

2

(
Γ

2πR

)2

−
(

Γ
2πR

)2



R∫

δ

dr

r
−

R1∫

δ1

dr1

r1


= vx (vx,1−U0) . (20)

The non-dimensional tip speed ration λ= ΩR
Uo

, and non-dimensional vortex q = −Γ
2πRUo

are introduced. As Γ< 0 q > 0. Fur-

thermore from here on vx and vx,1 indicate the dimensionless value vx

U0
respectively vx,1

U0
. Herewith (9) becomes:

1
ρ

∆H
U2

0

=−λq, (21)25

5

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-55, 2017
Manuscript under review for journal Wind Energ. Sci.
Published: 2 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



and the momentum balance:

λq+
1
2
q2 + q2

[
ln
R

δ
− ln

R1

δ1

]
= vx (1− vx,1) (22)

as well as the energy balance:

2λq+ q2

(
R

R1

)2

=
(
1− v2

x,1

)
. (23)

These equations can be solved for vx once the term within the square brackets is known or more precisely: when the vortex5

core development is known. When vx is known the power coefficient Cp = P/( 1
2ρU

3
0πR

2) follows by integration of (7) on the

disc area:

Cp = 2λqvx. (24)

The thrust coefficient CT = T/( 1
2ρU

2
0πR

2) contains the contributions a and b shown in figure 1, here denoted as ∆H respec-

tively ∆ϕ:10

CT = CT,∆H +CT,∆ϕ = 2λq+ q2 ln
(
R

δ

)2

. (25)

3.2 The choice of the vortex core model

The momentum theory results are very sensitive to the choice of δ and δ1 because of the logarithmic singularity in (22) for

δ,δ1→ 0. This is in contrast to real instead of inviscid flows where viscosity removes the singularity. Furthermore, in the

numerical potential flow model, presented in section 4, the vortex core size is not a parameter at all. The momentum balance15

(22) gives 2 possibilities to remove the impact of the singular behaviour from the momentum balance: either δ/R= δ1/R1 or

δ = δ1. In Sørensen and van Kuik (2011) the first possibility is assumed: the core diameter scales with the radius of the wake

because of mass conservation. The two terms within the square brackets of (22) cancel each other completely so only pressure

distributions a and d appear in the momentum balance. This holds for δ→ 0 as well as for δ 6= 0. However, this choice assumes

that vx,core = vx, which is is not correct. The distribution vx(r) is known from calculations like in van Kuik and Lignarolo20

(2016) showing that for small r vx > vx. As the velocity at both sides of the core boundary are equal, vx,core > vx which

invalidates the assumption δ/R= δ1/R1.

The choice for δ = δ1, so for a constant vortex core diameter, will be applied in the next section. Like for the model applied

in Sørensen and van Kuik (2011) it is clear that this vortex core model can not satisfy the invsicid equations of motions:

mass conservation makes a decelerating vortex core grow in diameter. However, the following analysis shows that the core25

with constant size represents best the effect of a smooth distribution of vϕ. Figure 2.8 in Alekseenko et al. (2007) shows the

development over time of vϕ due to diffusion. Assuming that time may be replaced by downstream distance divided by velocity,

figure 2 shows qualitatively the development of vϕ from disc to wake, both for inviscid and viscous flows. For r < r∗ the flow

is assumed to have a viscous character while vϕ,1 = vϕ for r∗ < r < R. To allow for other distributions of vϕ than (3) plus the

6
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Figure 2. Qualitative sketch of the inviscid distribution of vϕ and the partly inviscid, partly viscous distribution.

Rankine vortex core, first the third term at the left hand side of (20) is reformulated in terms of vϕ:

− 1
R2




R∫

0

v2
ϕrdr−

R1∫

0

v2
ϕ,1rdr


=

1
R2



R1∫

R

v2
ϕ,1rdr−

r∗∫

0

(
v2
ϕ− v2

ϕ,1

)
rdr


 (26)

with the lower bound of the integrals at the left hand side set to 0. The first integral at the right hand side is independent of a core

model, but the second integral is. In Alekseenko et al. (2007) the development of a viscous vortex core is treated. For a specific

accelerating vortex flow, the Burgers vortex, the diffusion and stretching counteract in such a way that the distribution of vϕ(r)5

is invariant, see Alekseenko et al. (2007), so vϕ = vϕ1 for r < r∗. For a decelerating vortex such a solution is not known. The

vortex is compressed giving a similar vorticity spreading effect as diffusion. As it is not known what vϕ,max/vϕ1,max and δ/δ1

are, the difference-integral in (26) cannot be evaluated without detailed calculations. However, as viscosity keeps the pressure

and vϕ limited the second integral in the right hand side of (26) will not not contribute when δ,δ1�R,R1. Then the first

integral remains so, in dimensionless form:10

− 1
R2




R∫

0

v2
ϕrdr−

R1∫

0

v2
ϕ,1rdr


= q2 ln

R

R1
. (27)

The same result is obtained in the inviscid model of a potential vortex plus Rankine vortex core by assuming δ = δ1, as is clear

by (22). This shows that an inviscid core with an infinitely small but constant radius represents best the behaviour of a viscous

vortex core, although verification by viscous actuator disc calculations is to be done. This model will be applied in the next

section.15
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3.3 Joukowsky actuator disc momentum theory with swirl

With δ = δ1→ 0 contribution b is cancelled by c<R which is the part of c up to r1 =R. Now the pressure fields a, c>R and d

appear in the momentum balance. The term with square bracket in (22) becomes:

−q2 ln
(
R1

R

)
=−q

2

2
ln
(
R1

R

)2

(28)

and the momentum balance, making use of (18):5

2λq+ q2

(
1− ln

(
vx
vx,1

))
= 2vx (1− vx,1) . (29)

The energy balance (23) is unchanged.

By mixing (23) and (29) the velocity at the disc can be written as:

vx =
1
2

(vx,1 + 1)
λq+ 1

2q
2

(
1 + ln

(
R
R1

)2
)

λq+ 1
2q

2
(
R
R1

)2 . (30)

As (1 + ln(R/R1)2)< (R1/R)2 for R<R1 the ratio is < 1. Consequently vx < 0.5(vx,1 + 1). The ratio in (30) is the ratio10

between the left hand side of the momentum balance (22) and energy balance (23) or, in other words, between the total load

exerted on the flow in the stream-tube control volume and the non-conservative load which is the load performing work. By

this, (30) is equivalent to equation 6 of van Kuik and Lignarolo (2016), where the distinction between the conservative and

non-conservative loads is used to explain the results of the momentum theory applied to an annulus of the stream-tube.

An analytical solution of (23) and (29) is not found. An implicit expression of vx,1 in the independent variables λ, q is15

obtained by writing (23) as an expression for vx with the help of (18) and substitute this in (29):

(1− vx,1)vx,1q2

1 + 2λq− v2
x,1

=

(
qλ− 1

2
q2

(
1− ln

(
q2

1 + 2λq− v2
x,1

)))
. (31)

This can be solved numerically for vx,1. The wake expansion follows by (23) and the velocity at the disc by (29). Finally Cp is

given by (24).

3.4 Limit values of the Joukowsky momentum theory for λ→ 0, λ→ ∞ and for maximum Cp20

For large values of λ the wake angular momentum should go to 0, and the momentum theory should become the one-

dimensional theory yielding the well-known Betz-Joukowsky maximum value for Cp. According to (21) q is inversely pro-

portional to λ for constant ∆H or λq. In the balances (23) and (29) the q2 terms vanish for λ→ 0 with which indeed the

momentum theory without wake swirl is recovered.

For the limit λ→ 0 flow states with λq = constant are studied. The energy balance (23) shows that the highest value for25

q2(R/R1)2 is obtained for vx,1 = 0:

2λq+ q2

(
R

R1

)2

= 1. (32)
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Figure 3. Streamlines with ∆ψ = 0.1∆ψwake and isobars with ∆p= 0.1∆H for ∆H/( 1
2
ρU2

0 ) =−0.8888 and λ= 0.731. Isobars close

to the wake axis are not plotted. Ticks at the axes are at a 1R interval.

The right hand side of the momentum balance is 0 for vx,1 = 0, see (17), by which it becomes):

2λq+ q2

(
1− ln

(
R1

R

)2
)

= 0. (33)

Elimination of q2 from (32) and (33) gives the wake expansion for the highest q - lowest λ:
(
R1

R

)2
(

1− ln
(
R1

R

)2
)

=
2λq

2λq− 1
. (34)

As an example, 2λq = 8/9 results in R1
R = 2.77, q = 0.924 by (32) and λ= 0.48. Although the wake expansion is significant,5

both vx and vx,1 are 0, but the ratio of vx

vx,1
→ 7.69. This flow state is characterized by a full blockage by the disc, creating a

wake with azimuthal flow only, so there is no change in axial momentum. The associated pressure distributions in the wake

and at the disc balance each other. A lower value of λ is not possible for this value of λq. For λq = 0 with λ= 0, (34) gives

ln
(
R1
R

)2
= 1, (32) gives R1

R = q =
√
e= 1.648 although vx = vx,1 = 0. In the wake only the azimuthal velocity is non-zero,

reaching q
2πR1

= 1 at the far wake boundary r =R1. The wake expansion is close the experimental value ≈ 1.6 of the wake10

expansion behind a solid disc reported in Craze (1977).

Cp,max(λ) is obtained by optimizing the solutions for fixed λ varying q.

4 Potential flow calculations

The computer code described in van Kuik and Lignarolo (2016) has been adapted to include wakes with swirl. Axial and

radial velocities are calculated by summation of the induction by each of the several thousand vortex rings which constitute the15

wake boundary. The azimuthal velocities are calculated by (3). The shape and strength of the vortex rings are adapted in the

convergence scheme to satisfy the two boundary conditions: zero pressure jump across the wake boundary, and zero cross flow.

The first boundary condition ∆pwake−boundary = 0 is expressed in |v| and input parameter ∆H: ∆( 1
2ρ |v|

2)−∆H = 0. In

van Kuik and Lignarolo (2016) v only had an axial and radial component, now the azimuthal component enters the boundary

9
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Figure 4. Streamlines with ∆ψ = 0.1∆ψwake and isobars with ∆p= 0.1∆H for ∆H/( 1
2
ρU2

0 ) =−0.8888 and λ= 1.018. Isobars close

to the wake axis are not plotted. Ticks at the axes are at a 1R interval.

Figure 5. The velocity components at x= 0 for ∆H/( 1
2
ρU2

0 ) =−0.8888 and λ= 1.018. |v|meridian is
√
vx

2 + vr
2. The horizontal axis

displays r/R.

condition. The strength of the vortex at the axis follows from (21) expressed in H and the second input parameter λ: q =

−∆H/(ρU2
0λ). Apart from these changes the code and the numerical parameters are unmodified. The results satisfy the same

accuracy requirements as described in van Kuik and Lignarolo (2016). Figure 3 and figure 4 show the streamlines, expressed

in the stream-function Ψ, and isobars of the disc flow with ∆H/( 1
2ρU

2
0 ) =−0.8888 and λ= 0.731 respectively 1.018. The

isobars in the wake show the pressure gradient due to the swirl.5

5 Constant meridian velocity at the disc

As shown in figures 3 and 4 the pressure at the upstream side of the disc is constant, which implies, by the Bernoulli equation,

that the absolute velocity |v| upstream of the disc is constant. Figure 5 shows the values of the axial, radial and azimuthal

velocity component at the disc as well as the absolute value |v|meridian =
√
vx2 + vr2. The fact that |v|meridian is constant

confirms the findings in van Kuik and Lignarolo (2016) where the same result was found for actuator disc flows without swirl,10

so is independent of λ. The explanation given in van Kuik and Lignarolo (2016) is now extended to include discs with swirl.

The radial component of (1) just upstream of the disc is:

ρvs
∂vr
∂s

=−∂p
∂r

(35)
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Figure 6. Strength of the vortex sheet as a function of the distance s from the leading edge measured along the sheet, for ∆H/( 1
2
ρU2

0 ) =

−0.8888 and λ= 1.018..

with s being the coordinate along the streamline and r the radial coordinate. The pressure does not depend on r when it is shown

that the radial velocity reaches a maximum at the disc when following a streamline. Along any streamline passing the disc, vr

increases when the position of observation s0 travels from far upstream to the disc sdisc, due to the decreasing distance to the

vorticity γ in the wake boundary, so ∂vr/∂s > 0. At the streamline in the wake two regions can be distinguished: the vorticity

between sdisc and s0 induces a negative vr so contributes to ∂vr/∂s < 0, while the induction by the vorticity downstream of s05

will vary only slightly as γ is non-uniform. The result is that ∂vr/∂s= 0 at the disc position, so by (35) the pressure upstream

of the disc is constant and by the Bernoulli equation |v|meridian is constant, QED.

Figure 6 shows the calculated strength of the vortex sheet for the load case of figures ?? and 5, confirming the reasoning.

With |γ| having a maximum at its leading edge, the non-uniformity of γ contributes to a negative induction of vr at streamline

positions s0 > sdisc. It should be noted that the distribution in figure 6 does not show the irregular behaviour at the leading10

edge as shown in figure 9 of van Kuik and Lignarolo (2016). The explanation is that the distance between the first vortex rings

in this previous paper is smaller than the radius of the vortex ring core, leading to this irregularity. Calculations with a smaller

core size, not yet reported, have removed this irregularity, thereby not having impact on the flow pattern and numerical results.

In the present calculation the distance between rings is always larger than the radius of the core of the vortex ring.

Now the pressure at the upstream side of the disc is known to be constant, the radial derivative of (6) becomes:15

∂p−
∂r

=−ρv
2
ϕ

r
(36)

with p− being the pressure at the downstream side of the disc. This is the radial equilibrium expression (12) for the flow in the

wake. Apparently the the radial distribution of p is linked to vϕ only, not to the other velocity components.
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Figure 7. The Joukowsky momentum theory results compared with potential flow calculations.

6 Results

Figure 7 shows the comparison of the Joukowsky Momentum Theory and the potential flow results. The correspondence

between both is excellent. A comparison with the Cp,max−λ curve for discs having a modified Betz-Goldstein distribution

of the circulation is shown in figure 8. As shown by Okulov and Sørensen (2008); Okulov (2014) the original Betz-Goldstein

solution for a rotor with a finite number of blades resulted in Cp,max = 1, as the pitch of the helicoidal wake was based on5

the undisturbed velocity. With the pitch based on the velocity in the rotor plane, Okulov (2014) showed that Cp,max reaches

the well known Betz-Joukowsky maximum 16/27 for high λ. The Cp,max−λ curve of this corrected solution expanded to a

rotor with an infinite number of blades is shown in figure 3 of Okulov (2014). An alternative solution is published in Wood

(2015) where the Goldstein formulation is adapted to allow for non-zero torque when λ→ 0. A comparison of the Joukowsky

maximum Cp curve and corresponding Betz-Goldstein-Okulov/Wood curves is given in figure 8. The Joukowsky distribution10

gives higher Cp,max than the Betz-Goldstein based distributions, with the difference vanishing for higher λ. This is confirmed

by Okulov and Sørensen (2010) where rotors with a finite number of blades having a Joukowsky and Betz-Goldstein based

distribution have been compared.

7 Conclusions

– An actuator disc momentum theory including wake swirl has been developed resulting in the physically plausible result15

that Cp→ 0 in the limit λ→ 0. For high λ the theory reproduces the results of the classical momentum theory without

swirl.

– The novelty in the method is the removal from the momentum balance of the singular behaviour of the pressure near

the wake centreline vortex, giving rise to non-physical results in several previously published methods. This removal is
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Figure 8. The Joukowsky actuator disc results compared with the Betz-Goldstein solutions of Okulov (2014) and Wood (2015) for rotors

with an infinite number of blades.

done by applying a vortex core with constant diameter δ. Support for this is found in the absence of singular flow when

viscous core development is considered.

– The momentum theory results are very accurately confirmed by potential flow field calculations.

– At the actuator disc the velocity in the meridian plane is constant.

– The Joukowsky momentum theory results are higher than the equivalent results for rotors with an infinite number of5

blades optimized for modified Betz-Goldstein solutions.
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